
International Journal of Scientific & Engineering Research, Volume 11, Issue 9, Septenber-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Automatic generation of Web Users Interfaces
using a Model-Driven Approach.

Thierry NOULAMO, Bernard FOTSING TALLA, Jean-Pierre LIENOU

Abstract— One of the main objectives of software engineering is to evaluate and improve the quality and productivity of software. Productivity is

therfore a determining factor to take into account during software development.This paper focuses on the automatic production, using the Model-Driven
Engineering (MDE) approach, of software systems in general and human-machine interfaces of interactive applications in particular. Our method aims to
produce two design Meta-Models: a source Meta-Model called “DD_IHM” ("Description Diagram for Human-Machine Interfaces"), for the production of
HMIs by exploiting the graphic richness proposed by UML, and a target Meta-Model called “CGFP” (Context Grammar for PEAR), specific to the PHP
language described by the productions of the underlying context-free grammar. We propose then a set of generic rules written in the QVT language, for
the transformation of a model conforming to the source Meta-Model into a model conforming to the target Meta-Model. We validate our approach on a
simple example of a currency converter.

Index Terms— Web Applications, HMI, Models Transformation, Context-free Grammar, QVT, Software productivity.

—————————— ——————————

1 INTRODUCTION

roductivity is a complex concept that should be measured
or defined in order to improve the software quality [1]. The
productivity in ISO 9126 is a quality factor of the software

products and is defined as “the capability of the software prod-
uct to enable users to expend appropriate amount of resources
in relation to the effectiveness achieved in a specified context of
use” [2]. In recent years it becomes clear that if we want to pro-
duce quality software, it is necessary to focus on both the prod-
ucts of software and the process used for software development
[3]. We propose in this paper an approach to improve the soft-
ware productivity.

Nowadays, user interfaces are complex software components
that play a vital role in the implementation of applications.
Their development requires the use of a process that integrates
the visual models and the standardized notations for this visu-
alization. The use of Multi-Tier architecture, for the design of
applications favors the production of reusable and easily main-
tainable systems [4]. The development of web applications in
particular can be done according to a Three-tier architecture :
the presentation tier still called the external layer, which corre-
sponds to the construction of human-machine interactions; the
application tier, still called functional layer, which corresponds
to the construction of the semantic component, and the data tier
called the inner layer. We are interested in this work by the
presentation layer.

The complexity of user interfaces of modern systems re-
quires, like all other phases of the systems development pro-
cess, a methodology and a good modeling technique. The two
main approaches to achieving these types of systems are the
task-based and the model-based approach. We are interested in
this work by the second approach. According to Schlungbaum
[5], the knowledge involved in the implementation of interac-
tive systems can be represented by models. Our attention
is focused on the production of an operationnal human-
machine interaction models.
Many commercial tools, often referred generically as User Inter-
face Management Systems (UIMS), are currently being pro-
posed to make easier the implementation of the interactive sys-

tems presentation layer by the non-specialist programmers [6].
However, the use of such tools does not promote the auto-

mation of the entire process of developing interactive systems
and are for the most part proprietary.
Model Driven Engineering (MDE) is today at the heart of the
system development activities in the industry [7], [8], [9] and
promotes the model of the systems as the primary artefact of the
developmental principle [7]. However, the models used must be
operational so that an implementation can be generated sys-
tematically.

The objective of this work is to produce a human machine in-
terface (HMI) Meta-Model, which is intended to be operational,
describing precisely the interactions expected in the interactive
system. This paper adds graphical interface design elements to
the design elements proposed in [10][11]. In [11], authors pro-
posed an approach base on two level transformation. The inter-
action diagram obtained is translated in this work into a PHP-
specific Meta-Model PHP by using a single model transfor-
mation generics rules, implemented in the QVT language.

The work is structured as follows. In section 2, we review the
works that has been done on HMI modeling in the interactive
systems development process. In section 3, we present our de-
sign approach. In Section 4, we describe the source Meta-Model,
the target Meta-Models and we propose a generic description of
the transformation rules from the source model to the target
model that we implement with QVT. Section 5 shows through
an example the automatic generation of the interface of a simple
currency converter. In section 6, we presents the physical archi-
tecture of our approach and highlights the components neces-
sary for the implementation of an HMI according to this ap-
proach. We conclude in section 7 by identifying some future
work.

2 EXPERIENCE IN IMPLEMENTING HMIS.

The need to realize the interfaces of an application with the
same rigor as that granted to the application itself becomes es-

P

1439

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

sential in critical systems in particular and in computer applica-
tions in general for reasons of cost, reuse, maintenance, reliabil-
ity and usability. Several notations make possible the expression
of user needs concerning the human-machine interaction: AMD
(Analytical Method of Description) [12], HTA (Hierarchical
Task Analysis) [13], UAN [14] and its extension XUAN [15] and
the notation ConcurTaskTrees (CTT1 [16]). All these notations
constitute the starting base of realization of an HMI. However,
they are mostly user centric and are far from the operational
computer models. Whithout any doubt, the model-based devel-
opment systems will emerge. The architecture models derived
from these systems assume that an interactive system has an
interface portion and a functional core portion that refers to the
domain of the application. Several models of architecture exist
in the literature: layered models such as Seeheim [17] and Arch
[18], agent models such as MVC (Model, View, Controller),
PAC (Presentation, Abstraction Control) [19], [20], [21], [4] and
mixed models that attempt to take advantage of the respective
advantages of the two previous categories.
We are interested in this paper in agent models. They all have
as a common element the interface between the functional ker-
nel and the user, called "view" in the MVC model and "Presen-
tation" in the PAC model. However, no specification is made of
the details of this layer. Our goal is to automate the develop-
ment of the user interfaces. This overall objective is broken
down into several specific objectives: to propose, in the form of
a Meta-Model, a set of component patterns intended for the
specification of the presentation layer; to propose a HTML
QuickForm profile for the PHP language called “CGFP” and,
finally, to propose a set of rules for the transformation of an
instance of the current source Meta-Model to an instance of the
target Meta-Model.

3 DESIGN APPROACH

The figure 1 presents the different design steps of our approach.

Fig. 1. The different stages of the design approach

We use the "DD-IHM" meta-model (1) to build a source

model (3). The Model to Text transformation (5) is imple-
mented to transform a source model into a target model (4)
that is conforming to “CGFP” Meta-Model (2).

4 DESCRIPTION OF META-MODELS AND THE

TRANSFORMATION RULES

The Unified Modeling Language (UML) [22], [23] has estab-
lished itself as a de facto standard for the modeling of systems

by following an object-oriented approach.
We use it, in this section, to represent the different meta-
classes constituting the elements of our source Meta-Model.
We also present in the form of a concrete syntax of the context-
free grammar the description of the elements of the target Me-
ta-Model and give the generic specifcation of the associated
transformation rules in the QVT language.

4.1 The source Meta-Model: DD-IHM

The source Meta-Model that we propose covers the significant
concepts for modeling user interfaces. We use the class dia-
gram, the activity diagram and the transitional state diagram
of the UML Meta-Model [18] to build new design elements.
This allows us to present the elements of the HMI patterns and
the DTD describing the storage format.
The Figure 2 models in a UML class diagram the main ele-
ments that can be found in an HMI. In particular, the element
"FormClass" that represents a form with its attributes is com-
posed mainly of two sub-classes: the class "Node" and the
class "Attribut". Node is composed of three classes: "Data",
"Rules" and "groupeELT". The class "Data" is similar to label
element in HTML language, it allows to paste a label to an
element of the form. The "Rules" class materializes the set of
validation constraints that can be assimilated to a component
of the form. A node is composed of at most one element
group. In a group we can have several subgroups. The ele-
ment "Menu", as its name suggests, allows to build the com-
ponents that are used to navigate in the application. The menu
can be vertical or horizontal. An HMI can contain several
menus. Recall that our main concern is the production of
models from which we can automatically generate a PHP im-
plementation of interactive systems HMIs. For this purpose,
we use a subset of the UML modeling language, to which we
have added a set of concepts to adapt the method to a compo-
sition approach of elements of the Meta-Model. The class dia-
gram is the basis of this proposition. Each node of the Meta-
Model is associated to the communication ports (input and
output) to obtain a dynamic object that is an instance of a class
of the basic diagram (figure 2). The composition of the "Dy-
namics Objects" using the activities diagram nodes include in
the Meta-Model give us a new diagram called “Dynamic Ob-
jects Diagram” (DoD). This allows the modeling of an HMI by
connecting inputs and outputs of appropriately selected dy-
namic objects. An HMI is considered as a large object, using
the above elements as the states. The entire model is stored in
the XML format which is conforming to the DTD, given by the
listing 1 below, to support its use in a Models Driven Engi-
neering approach.

1440

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Fig2. DD-IHM Meta-Model class diagram

The table 1 describes the elements of the source Meta-Model
as well as their representation in the form of DoD.

1441

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

TABLE 1

SEMANTICS OF HMI PATTERNS DESCRIBING THE SOURCE META-
MODEL

Element’s

names
Representation Semantics

Form_Class

Main element that

encapsulates other

elements

Group_Elt

Group element

Menu Node

Field_Text

Allows to create a

HTML Text Field

Long_Field_T

ext

Allows to create a

HTML

Long Text Field

Bouton

Allows to create a

HTML Button

Date

Allows to create a

HTML Date

CheckBox

Allows to create a

HTML CheckBox

Radio

Allows to create a

HTML Radio Field

Initial_Node

Beginning of the dia-

gram, UML Element

End_Node

End of the diagram,

UML Element

Transi-

tion_Node

Materializes the transi-

tion between two for

elements, UML Ele-

ment

Test_Node

Use as a bridge be-

tween two or more

form elements, UML

Element

Synchroniza-

tion_ Node

Materialize the syn-

chronazation between

the form elements,

UML Element

Label Node

Use to create the label

in a forme

Condition

Node
[Cond]

Logical condition asso-

ciated to the decision

nodes

4.2. The target Meta-Model : CGFP

The target Meta-Model is an abstract description of the HTML
QuickForm code for generating an HMI in PHP (which is a typ-
ical HTML form). This description is given in the form of pro-
ductions (in Backus Naur Form - BNF notation) of the underly-
ing context-free grammar (see Listing 2 below). Recall that a
context-free grammar consists of a tuple G = (V, T, P, S) where:
"V" is the (finite) set of variables (or nonterminals or syntactic
categories such as <RadioElt>, <TextElt>, ...). Each variable rep-
resents a language, i.e., a set of strings; "T" is a finite set of ter-
minals, i.e., the symbols that form the strings of the language
being defined; "P" is a set of production rules that represent the
recursive definition of the language and "S" is the start symbol
that represents the language being defined. Other variables rep-
resent auxiliary classes of strings that are used to help define the
language of the start symbol (<FormHTMLQF>).

1442

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

LISTING 1. EXTRACT OF THE DTD OF THE HMI PATTERNS DESCRIBING THE SOURCE META-MODEL.

1443

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

LISTING 2. PRODUCTIONS OF THE CGFP DESCRIBING THE TARGET META-MODEL.

4.3. The transformation rules

QVT (Query/View/Transformation) is a standard of lan-
guages for model transformation defined by the Object Man-
agement Group [24]. The QVT standard defines three model
transformation languages. All of them operate on models
which are conform to Meta-Object Facility (MOF) 2.0 meta-
models. We are interested here by the QVT-Operational mod-
el, which is an imperative language designed for writing uni-
directional transformations. A model transformation takes as
input a model conforming to a source Meta-Model and pro-

duces as output another model conforming to a target meta-
model.
We first of all declare the source and target Meta-Models types
respectively “DD_IHM” and “CGFP”, which content the im-
plementation of all the HMI elements in the appropriate for-
mats, as follow:
 modeltype DD_IHM uses "http://localhost/hmi2";
 modeltype CGFP uses "http://localhost/htmlQF.hs";
The structure of the transformation rules is given as follow:

1444

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

transformation hmi2htmlQF(in hmi :DD_IHM, out
htmlQF :CGFP){
main(){
hmi.objects()[hmi::FormNode]->map frmNode2frmHtmlQF();
hmi.objects()[hmi::TextNode]->map txtNode2txtHtmlQF();
hmi.objects()[hmi::RadioNode]->map radi-
oNode2radioHtmlQF();
hmi.objects()[hmi::CheckBoxNode]->map cbNode2cbHtmlQF();
hmi.objects()[hmi::ListNode] ->map lstNode2lstHtmlQF();
hmi.objects()[hmi::DateNode]->map dateNode2dateHtmlQF();

hmi.objects()[hmi::ButtonNode] ->map btnNode2btnHtmlQF();
}
...
It transforms any input model hmi of type SimpleHMI_MM
into the corresponding output model htmlQF of type
HtmlQF_MM. The function main() is the entry point of the
transformation. The following statement (which is a typical
transformation rule)

hmi.objects()[hmi::FormNode] ->map frm-
Node2frmHtmlQF();

applies frmNode2frmHtmlQF() to each FormNode object in
the input model and translates it into the corresponding

HTML_QuickForm code.
Every mapping is an operation associating an element from
the input model with another element from the output model.
For example, to transform a FormNode to FormHtmlQF, the
corresponding mapping operation is:

mapping hmi::FormNode::frmNode2frmHtmlQF() :
htmlQF::FormHtmlQF {
FormHtmlQF
:="include('headerFile.php');"+self.Name+" id = new
HTML QuickForm ('"+ self.Name+"','"+ self.Method +
"',' " + self.Action+ "'); " +
hmi::FormNode::frmElements();
}
...
}

5 APPLICATION TO A SIMPLE CURRENCY CONVERTER

We present in this section an example of a HMI of a simple
currency convertor. The interface is described in XML format
with the appropriate elements of the source meta-model as
shown in the listing 3.

LISTING 3. SOURCE MODEL'S XML DESCRIPTION OF THE CONVERTER.

Fig. 3. Model of our case study using DD_IHM

The application of the transformation rules defined previously
generates the HTML QuickForm code as shown by the listing
4 which leads to the user interface for the currency converter
of the Figure 4.

1445

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

LISTING 4. GENERATED HTML QUICKFORM OF THE CONVERTER

Fig. 4. HMI of the Converter.

1446

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

6 PHYSICAL MODEL

Once Pear and the package HTML QuickForm2 installed, we
will have a tree structure represented by the figure 5.

Server: The folder in which the web server and php
are installed,

k-
Form2.

The php source file obtained after transforming the
“DD_IHM” model is stored in the PEARDIR folder. And can
therefore be run via the url
“http://localhost/peardir/currency_converter.php”. A file
named “head.php” containing the definition of the personali-
zation data of the page is placed in the HTML folder of our
tree. This file contains the reference of the stylesheet files
(quickform.css) and JavaScript (js/quickform.js) both placed in
a folder named data, located in the “PEARDIR” folder.

Fig. 5. Deployment architecture

7 CONCLUSION AND FURTHER WORKS

This work focused on the automatic production of the hu-
man-machine dialogue layer. It's part of a broader research per-
spective aimed at fully automating the software production
process. Indeed it shows that it is possible to produce 100% im-
plementation of a software system using the IDM approach. We
have proposed a set of design patterns that model the HMI
components and are used to represent the details of the presen-
tation layer of the Web applications and a target Meta-Model
that is an abstract description in the form of HTML_QuickForm
code for the HMI generation in PHP. The rules for transforming
a model of the source Meta-Model into a target Meta-Model
model are described in the QVT language. The results allow us
to appreciate the gain in time and efficiency in the production of
robust HMI in php. In our future work, we will propose a gen-
eralize approach including the data layer and the business lay-
er. This require the extention of the Meta-Models so that they
can take into account all the elements of business layer and data
layer.

ACKNOWLEDGMENTS

Dr NOULAMO Thierry, Dr FOTSING TALLA Bernard and
Dr LIENOU Jean Pierre are Lecturers at FOTSO Victor Universi-
ty Institute of Technology of the University of Dschang.

The authors are involved in the project "WESIP" (Web Sys-
tem Interactive Plat-form), developed within the STIC team of
the LAIA laboratory of the University of Dschang. We propose
to setting up a platform for the development of interactive Web
applications according to a model-based approach.

REFERENCES

[1] Ernandez-Lopez, A. ; Dept. Inf., Univ. Carlos III de Madrid, Legan s, Spain ;

Colomo-Palacios, R. ; Garcia-Crespo, A. Productivity in software engineering:

A study of its meanings for practitioners:Understanding the concept under

their standpoint Information Systems and Technologies (CISTI), 2012 7th Ibe-

rian Conference on 20-23 June 2012.

[2] ISO, ISO/IEC TR 9126-4: Information Technology - Product Quality - Part 4:

Quality in Use Metrics, Geneva, Switzerland: International Organization for

Standardization, 2004.

[3] Anupriya et al., Survey on Various Productivity Measures of Software Devel-

opment Teams, International Journal of Advanced Research in Computer Sci-

ence and Software Engineering 4(6), June - 2014, pp. 462-464

[4] G.E. PFA . " User Interface Managment Systems ", Eurographics seminars,

Springer Verlag - Berlin, 1985.

[5] SCHLUNGBAUM E., ELWERT T., Automatic user Generation from Declara-

tive Models, In [CADUI 96].

[6] MYERS BRAD A., User Interface Software Tools ", ACM Transactions on

Computer Human Interaction. vol. 1, no 2, pp. 64-103, 1995.

[7] R. B. HAILPERN , P. TARR, Model-driven development : The good, the bad

and the ugly, IBM Systems Journal, vol. 3,no 45, PP. 1-25, 2006.

[8] D. SCHMIDT, "Guest Editor's Introduction : Model-Driven Engineering ",

Computer, vol. 2,no 9, PP. 25-31, Feb. 2006, ISSN 0018-9162.

[9] B. SELIC, Unified Modeling Language version 2.0 - In support of model-

driven development, IBM Rational Developer Works,no PP. 1-33 nov. 2005.

[10] E. Andr, C. Choppy, and T. Noulamo. Modelling timed concurrent systems

using activity diagram patterns. KSE'14, Springer Advances in Intelligent Sys-

tems and Computing, octobre 2014. http://lipn.univ-paris13.fr/ an-

dre/publications fr.php.

[11] T. NOULAMO, B. FOTSING TALLA, M. WANE, L. H. NZOTHIAM

TAKOU, A Model-Driven Approach for Developing WEB Users Interfaces

of Interactive Systems, International Journal of Computer Trends and Tech-

nology (IJCTT) – Volume 68 Issue 4 – April 2020, ISSN: 2231-2803

http://www.ijcttjournal.org Page 33-43

[12] D. L. SCAPIN , C. PIERRET-GOLBREICH, " Towards a Method for Task

Description : MAD ", In Work with display units. Elsevier Science Publishers,

no North-Holland, 1990.

[13] A.J. DIX, J. FINLAY, G. ABOWD , R. BEALE. Human-Computer Interaction,

Prentice Hall, no 1993.

[14] D. RIX , H.R. HARTSON. Developing User Interfaces : Ensuring Usability

Through Product Process, Wiley professional computing John Wiley Sons, no

inc. NY, USA, 1993.

[15] P. GRAY, D. ENGLAND, , S. MCGOWAN, XUAN : Enhancing the UAN to

Capture Temporal Relation Among Actions, Technical report, Department of

Computing Science, University of Glasgow, no 2 1994.

[16] FABIO PATERN. Model-Based Design and Evaluation of Interactive Appli-

cations , Springer, no 2001.

1447

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 11, Issue 9, September-2020
ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

[17] PFAFF, G. E. (1985). User Interface Management Systems, Workshop on User

Interface Management Systems (Eurographic Seminars), Seeheim, Springer-

Verlag, no November 1-3, 1985.

[18] UIMS, The UIMS Workshop Tool Developers : A Metamodel for the Runtime

Architecture of an Interactive System, SIGCHI Bulletin, no 24, PP. 32-37, 1992.

[19] COUTAZ, J. (1990). " Interfaces Homme-Ordinateur, Conception et Ralisation

", Dunod Informatique, no Paris, 1990

[20] COUTAZ, J., NIGAY, L. (2001). " Architecture logicielle conceptuelle des

systmes interactifs (chapitre 7) ", In Kolski, C. (Ed.), Analyse et conception de

l'I.H.M., Interaction HommeMachine pour les S.I., Herms Science, vol. 1, no

Paris, PP. 207-246, 2001.

[21] OMG, " Unified Modeling Language : Infrastructure - Version 2.5 for-

mal/2015-03-01", OMG, no nov. 2015a, URL http ://www.uml.org/.

[22] Unified Modeling Language : Infrastructure - Version 2.1.2 formal/07-11-04,

OMG, no nov. 2007a, URL http ://www.uml.org/.

[23] OMG, Unified Modeling Language : Superstructure - Version 2.1.2 for-

mal/07-11-02, OMGOMG, no . 2007b. URL http ://www.uml.org/.

[24] Bast, Wim; Murphree, Michael; Lawley, Michael; Duddy, Keith; Belaunde,

Mariano; Gri_n, Catherine; Sendall, Shane; Vojtisek, Didier; Steel, Jim; Helsen,

Simon; Tratt, Laurence; Reddy, Sreedhar; Venkatesh, R.; Blanc, Xavier; Dvo-

rak, Radek; Willink, Ed (January 2011). "Meta Object Facility (MOF) 2.0 Que-

ry/View/Transformation (QVT)" (pdf). Object Management Group. Re-

trieved 9 May 2011.

1448

IJSER

http://www.ijser.org/

